Longest Common Subsequence(LCS)
Approach 1 : Recursion
class Solution {
public static void main(String[] args) {
String s1 = "AGGTAB", s2 = "GXTXAYB";
int m = s1.length(), n = s2.length();
int lcs = solve(m-1, n-1, s1, s2);
System.out.println("Length of LCS = " + lcs);
}
public static int solve(int i, int j, String s1, String s2){
// base case
if(i < 0 || j < 0)
return 0;
// if the current characters of both strings match,
// then lcs length = 1 + lcs length for remaining part of these strings
if(s1.charAt(i) == s2.charAt(j))
return 1 + solve(i-1, j-1, s1, s2);
return Math.max(solve(i-1, j, s1, s2), solve(i, j-1, s1, s2));
}
}
-
Time Complexity : O(2m*n) where m and n are the length of the two strings
-
Space Complexity : O(max(m,n)) where m and n are the length of the two strings
Approach 2 : Memoization
-
Time Complexity : O(m*n) where m and n are the length of the two strings
-
Space Complexity : O(m*n) where m and n are the length of the two strings
Approach 3 : Tabulation
class Solution {
public static void main(String[] args) {
String s1 = "ABCDGH", s2 = "AEDFHR";
int m = s1.length(), n = s2.length();
int[][] dp = new int[m + 1][n + 1];
for(int i = 0; i < m + 1; i++){
for(int j = 0; j < n + 1; j++){
if(i == 0 || j == 0)
dp[i][j] = 0;
else if(s1.charAt(i-1) == s2.charAt(j-1))
dp[i][j] = 1 + dp[i-1][j-1];
else
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
int lcs = dp[m][n];
System.out.println("Length of LCS : " + dp[m][n]);
char[] str = new char[lcs];
int i = m, j = n;
while(i > 0 && j > 0){
if(dp[i-1][j] == dp[i][j])
i--;
else if(dp[i][j-1] == dp[i][j])
j--;
else{
str[--lcs] = s1.charAt(i-1);
i--;
j--;
}
}
System.out.println("LCS is : " + String.valueOf(str));
}
}
-
Time Complexity : O(m*n) where m and n are the length of the two strings
-
Space Complexity : O(m*n) where m and n are the length of the two strings