Longest Palindromic Subsequence(LPS)
- Basically, the idea is to find length of LCS of a string and it's reverse
Approach 1 : Recursion
class Solution {
public static void main(String[] args) {
String s1 = "";
String s2 = new StringBuilder(s1).reverse().toString();
int n = s1.length();
int lps = solve(n-1, n-1, s1, s2);
System.out.println("Length of LPS = " + lps);
}
public static int solve(int i, int j, String s1, String s2){
// base case
if(i < 0 || j < 0)
return 0;
// if the current characters of both strings match,
// then lcs length = 1 + lcs length for remaining part of these strings
if(s1.charAt(i) == s2.charAt(j))
return 1 + solve(i-1, j-1, s1, s2);
return Math.max(solve(i-1, j, s1, s2), solve(i, j-1, s1, s2));
}
}
-
Time Complexity : O(2n*n) where n is the length of the string
-
Space Complexity : O(n) where n is the length of the string
Approach 2 : Memoization
-
Time Complexity : O(n2) where n is the length of the string
-
Space Complexity : O(n2) where n is the length of the string
Approach 3 : Tabulation
class Solution {
public static void main(String[] args) {
String s1 = "";
String s2 = new StringBuilder(s1).reverse().toString();
int n = s1.length();
int[][] dp = new int[n + 1][n + 1];
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(s1.charAt(i-1) == s2.charAt(j-1))
dp[i][j] = 1 + dp[i-1][j-1];
else
dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);
}
}
System.out.println("Length of LPS = " + dp[n][n]);
}
}
-
Time Complexity : O(n2) where n is the length of the string
-
Space Complexity : O(n2) where n is the length of the string